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Abstract—In recent years, belief models, such as subjective
logic (SL) and collective subjective logic (CSL), have been
developed to model an opinion consisting of belief, disbelief,
and uncertainty. However, these belief models are designed based
on either predefined operators (e.g., discounting and consensus
operators) or distribution assumptions (e.g., Markov random
fields or MRFs) that are incapable of capturing the heterogeneity
of the uncertainty information in large-scale network data. In
this paper, we propose a general framework to model and
infer heterogeneous uncertainty information in network data
based on the state-of-the-art graph convolutional neural networks
(GCN). This work is the first that employs a GCN to model
the heterogeneous probability density function (PDF) of node-
level variables. And then we project this PDF function into a
subspace of PDF functions defined based on node-level opinions
via knowledge distillation, which provides an effective prediction
of the unknown opinion of some nodes based on the observed
opinions of the other nodes. Through the extensive simulation
experiments, we show that our proposed approach performs
better than SL and CSL in predicting unknown opinions when
using two road traffic datasets for the validation of the tested
algorithms.

I. INTRODUCTION

Uncertainty quantification or management has been realized
as a critical area to study for effective decision making process.
Uncertainty derives from many different causes, for example,
such as information missing during communications, incom-
plete, corrupted, vague, or conflicting information, and/or
biases from humans’ limited cognitive capabilities. All these
causes generates uncertainty which also significantly affects
the effectiveness of decision making.

Data mining researchers also have realized uncertain data
as critical factors to minimize and studied in many different
domains, including trust in social networks [10], opinion
diffusion [3], and graph summarization [13], and so forth.

Subjective Logic (SL), one of well-known belief model
derived from Dempster-Shafer Theory (DST) [14], is proposed
to deal with the dimension of uncertainty more explicitly.
SL defines a binomial opinion with three dimensions, belief,
disbelief, and uncertainty. SL also offers a variety of operators
that can combine multiple opinions under diverse settings.
In this sense, SL allows us to derive a certain structural
relation between multiple opinions. However, SL is limited

* This work is done when Jin-Hee Cho was with US Army Research
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in fusing two opinions, rather than fusing multiple opinions
concurrently. Hence, given a large scale network data, it is
not scalable. This is proven in our previous work [6] in which
we proposed Collective Subjective Logic (CSL) developed
based on the combination of Probabilistic Soft Logic (PSL)
and Markov Random Fields (MRFs). However, the assumption
of distribution based on MRFs limits its capability to deal
with heterogeneous network data that may be lossy, noisy,
incomplete, or missing, and also in a large-scale.

In this paper, we develop a general framework to address
the limitations of SL and CSL as stated above based on the
state-of-the-art graph convolutional networks (GCN). This is
the first work that employs a GCN to model the heterogeneous
probability density function (PDF) of node-level variables
and then project this PDF function into a subspace of PDF
functions defined based on node-level opinions. This can lead
to effective prediction of the unknown opinions of some nodes
where the opinions of the other nodes are known.

This work has the following key contributions:
1) The proposed GCN-based framework is the first deep

learning framework that is capable of predicting the
opinions of multiple nodes in a network collectively based
on GCN modeling.

2) The proposed GCN-based method achieves both effi-
ciency and effectiveness by leveraging the GCN to model
heterogeneous dependencies between the variables in a
network and knowledge distillation to transfer the het-
erogeneous dependencies into the prediction of opinions.

3) We validate the performance of our proposed approach
through the extensive simulation experiments based on
two road traffic datasets. We compare the performance
of our proposed approach with that of the existing coun-
terparts with respect to prediction accuracy of unknown
opinions and algorithmic complexity.

II. PRELIMINARIES

A. Binomial Opinion in Subjective Logic

In SL, a binomial opinion is defined in terms of belief,
disbelief, and uncertainty towards a given proposition x. For
simplicity, we omit x in the following notations. To formally
put, an opinion w is represented by:

w = (b, d, u, a) (1)
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where b is belief (e.g., true), d is disbelief (e.g., false),
and u is uncertainty (i.e., ignorance or lack of evidence). a
represents a base rate, a prior knowledge upon no commitment
(e.g., neither true nor false), where b + d + u = 1 for
(b, d, u, a) ∈ [0, 1]4. We denote an opinion by w, which can
be projected onto a single probability distribution by removing
the uncertainty mass.

A binomial opinion follows a Beta PDF (probability density
function), denoted by Beta(p|α, β), where α represents the
amount of positive evidence and β is the amount of negative
evidence [11].

In SL, uncertainty u decreases as more evidence, α and β, is
received over time. An opinion w can be obtained based on α
and β as w = (α, β). This can be translated to w = (b, d, u, a)
using the mapping rule in SL.

SL offers an operator, ⊗, to discount trust when an entity
does not have any direct experience with another entity. That
is, transitive trust based on structural relations is used to derive
trust between two entities who have not interacted before.
Trust from i to j, denoted by wij = (bij , d

i
j , u

i
j , a

i
j), and trust

from j to k, wjk = (bjk, d
j
k, u

j
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j
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by:
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j
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j
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k = aij ⊗ a

j
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SL also provides a consensus operator, ⊕, to find a consensus
between two opinions [11] where two entities observe a same
entity. An opinion after i exchanges opinions with k is given
by wik ⊕ w

j
k, where:
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j
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j
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k

ζ
, dik ⊕ d

j
k =

diku
j
k + djku

i
k

ζ
(3)

uik ⊕ u
j
k =

uiku
j
k

ζ
, aik ⊕ a

j
k = aik.

where ζ = uij + ujk − uiju
j
k > 0. When ζ = 0, wik ⊕ w

j
k is

defined by:

bik ⊕ b
j
k =

ψbik + bjk
ψ + 1

, dik ⊕ d
j
k =

ψdik + djk
ψ + 1

(4)

uik ⊕ u
j
k = 0, aik ⊕ a

j
k = ak.

where ψ = lim(uik/u
j
k). These discounting, ⊗, and consensus,

⊕, operators [11] are used to derive trust measures based on
the trust opinions of relationships. Due to space constraint,
we don’t show an example of using these operators. Interested
readers can be referred to [6].

In this work, we aim to derive a set of unknown opinions
x = {x1, · · · , xn} when a set of observed opinions y =
{y1, · · · , ym} is given where both opinions are represented
by a binomial opinion with four dimensions, as described in
Eq. 1 (i.e., wxi for i = 1 · · ·n and wyj for j = 1 · · ·m).

B. Graph Convolutional Networks (GCN)

Denote a graph as G = (V,E, A), where V = {1, · · · , n}
refers to the set of nodes and E ⊆ V × V refers to the
set of edges. Let A ∈ {0, 1}n×n be the adjacency matrix,
where Ai,j = 1 if (i, j) ∈ E and, otherwise, Ai,j = 0. The
(unnormalized) graph Laplacian matrix is an n×n symmetric
positive-semidefinite matrix L = D−A, where D is the degree
matrix and Di,i refers to the degree of node i and Di,i = 0
for i 6= j.

The graph Laplacian has an eigen decomposition L =
ΦΛΦT , where Φ = (φ1, · · · ,φn) are the orthonormal eigen-
vectors and Λ = diag(λ1, · · · , λn) is the diagonal matrix
of corresponding eigen values. The eigenvalues serve as the
role of frequencies in classical harmonic analysis and the
eigenvectors are interpreted as Fourier atoms. Given a signal
r ∈ Rn (or a vector of feature values) on the nodes of graph G,
where ri refers to a feature value at node i, its graph Fourier
transform is given by r̂ = ΦT r. Given two signals r and b
on the graph, we can define their spectral convolution as the
element-wise product of their Fourier transformations,

r ? b = ΦT (ΦT r) ◦ (ΦTb) = Φdiag(r̂1, · · · , r̂n)b̂, (5)

which is a property of the well-known Convolutional Theorem
in the Euclidean case.

As a graph is irregular, it is difficult to directly define
a convolution on the nodes. Instead, Bruna et al. [5] used
the spectral definition of convolution (Eq. (5)) to generalize
Convolutional Neural Networks (CNNs) on graphs, which has
a spectral convolutional layer of the form as:

gθ ? r = ΦgθΦ
T r. (6)

The filter gθ can be defined as a function of the eigenvalues
of L, i.e., g(Λ). Evaluation of Eq. (6) is computationally
expensive because multiplication with the eigenvector matrix
Φ is O(n2), in addition to the high computational cost in
computing the eigendecomposition of L in the first place. To
address this problem, Hammond et al. [7] suggest that gθ(Λ)
can be well-approximated by a truncated expansion in terms
of Chebyshev polynomials Tk(r) up to K-th order:

gθ(Λ) ≈
K∑
k=1

θkTk(Λ̃), (7)

with a rescaled Λ̃ = 2
λmax

Λ − In. λmax refers to the largest
eigenvalue of L. θ ∈ RK is now a vector of Chebyshev
coefficients. The Chebyshev polynomial can be recursively
defined as Tk(r) = 2xTk−1(r)−Tk−2(r), with T0(r) = 1 and
T1(r) = r. Applying the approximation based on Chebyshev
polynomials, a convolution of a signal x with a filter gθ now
has the approximated form:

gθ ? r ≈
K∑
k=1

θkTk(L̃)r. (8)
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By stacking multiple convolutional layers of the form of
Eq. (8) in which each layer is followed by a point-wise non-
linearity filter, we can therefore design a multi-layer convolu-
tional neural network model based on graph convolutions.

For example, a two-layer GCN model [12] for the task of
node classification on a network with a symmetric adjacency
matrix A (binary or weighted) can be formulated as:

p = g(r, A) = softmax (gW (1) ? ReLU(gW (0) ? r)) , (9)

where the output matrix p ∈ [0, 1]n×2 provides the predicted
probabilities of the binary classes of the n nodes. Here,
W (0),W (1) are weight matrixs.

III. PROBLEM FORMULATION

In this section, we describe an example to motivate a
problem to solve in this work. We also show how to formulate
a given uncertainty-based inference problem.

A. Example Scenario

In this work, we aim to infer unknown opinions based on
a set of known opinions in terms of the applications in traffic
congestion prediction in a road network. Given a network,
defined as G = (V,E = E1∪E2, f), where V = {1, 2, · · · , l}
is the set of vertices (i.e., intersections in the road network),
E ⊆ V×V is the set of edges (i.e., road links), and the function
f : E → {0, 1} refers to a boolean variable f(e) for edge e,
in which state 0 indicates ‘non-congested’ while state 1 refers
to ‘congested’ at time t. Suppose there is a subset of edges
E1 = {e1, · · · , eM} ⊆ E with traffic sensors (e.g., cameras)
installed at these edges where the edges without traffic sensors
are represented by E2 = {o1, · · · , oN}, and E = E1 ∪ E2.

Suppose that we are given the current observations of
the congestion variables on Y, y = [f(e1), · · · , f(eM )] ∈
{0, 1}M , and the beliefs (i.e., states) towards these variables
estimated based on their observations at the T historical time
stamps. A belief over the states of a congestion variable yi
can be represented as a subjective opinion, defined as wyi =
(byi , dyi , uyi , ayi) in Eq. (1), or equivalently as a Beta distri-
bution with the evidence parameters Beta(pyi ;αyi , βyi) [11].
For an edge ei ∈ E1 that has the T most recent observations
{f(e1i ), · · · , f(eTi )}, where r or s is the number of 0’s (i.e., no
traffic) or 1’s (i.e., traffic) in these observations, respectively.
Beta(pyi ;αyi , βyi) can be estimated by:

αyi = r + ayiW, βyi = s+ (1− ayi)W. (10)

where r and s are the amounts of positive and negative
evidence, W is a predefined non-informative prior weight (i.e.,
the amount of uncertain evidence) and ayi is a predefined prob-
ability of prior general background knowledge on proposition
yi used to interpret uncertain evidence W .

Given these information, we aim to predict the beliefs about
the states of the congestion variables at the edges in X without
sensors (i.e., intersections without any camera), denoted as
ωx = [ωx1

, · · · ,ωxN
], where xi refers to the state variable of

a link oi ∈ X and ωxi refers to evidence parameters of a Beta
distribution Beta(pxi ;αxi , βxi) that represents the belief about

TABLE I
Key notations and their meanings.

wx = (bx, dx, ux, ax) A binomial subjective opinion of a binary
random variable x as defined in Eq. (1)

px A truth probability of a binary random variable
x

ωx = (αx, βx) Evidence parameters of Beta(px|αx, βx) that
corresponds to a subjective opinion wx.

y = [y1, · · · , yM ],
py = [py1 , · · · , pyM ],
ωy = [ωy1 , · · · , ωyM ]

y is a vector of M input binary random vari-
ables whose subjective opinions are known.
py and ωy are the corresponding vectors of
truth probabilities and subjective opinions of
y, respectively.

x = [x1, · · · , xN ],
px = [px1 , · · · , pxN ],
ωx = [ωx1 , · · · , ωxM ]

x is a vector of N output binary random
variables, whose subjective opinions are to be
predicted. px and ωx are the corresponding
vectors of truth probabilities and subjective
opinions of x, respectively.

the state of xi. As the edges in X do not have any observations,
their beliefs cannot be directly inferred. Therefore, we can
infer the unknown beliefs towards the edges x based on the
structural relations between the known beliefs on other edges.

B. Problem Formulation
We formulate the problem of uncertainty-based inference

by:
Problem 1 (Uncertainty-based opinion inference in network data):
Let us define the following notations:

• Let G = (V,E, f) be the input network as defined above.
• Let y = (y1, · · · , yM ) be a vector of input boolean variables

over E1, whose opinions are denoted as ωy = (ωy1 , · · · , ωyM ),
implying that the PDF (probability density function) of the
truth probability of the variable yi, pyi , is Beta(pyi ;ωyi);
Let yi, pyi follows a Bernoulli distribution, Bern(yi; pyi). Let
{y(1), · · · ,y(T )} be the observations of y in the T most recent
observations.

• Let x = (x1, · · · , xN ) be a vector target boolean variables
over E2, whose opinions are denoted as ωx = (ωx1 , · · · , ωxN ),
implying that the PDF (probability density function) of the truth
probability of the variable xi, pxi , is Beta(pxi ;ωxi); Let xi, pxi
follows a Bernoulli distribution, Bern(xi; pxi).

• Let px = (px1 , · · · , pxN ), py = (py1 , · · · , pyM ).
Given

• G = (V,E = Y ∪ X, f), the input network;
• {y(1), · · · ,y(T )}, the observations of vector of input Boolean

variables and ωy = (ωy1 , · · · , ωyM ), the subjective opinions
on y.

Predict ωx, the opinion on the vector of target Boolean variables x.

IV. OUR PROPOSED APPROACH

In this section, we present a novel deep learning framework
that combines a probabilistic model of opinions (i.e., SL)
with a GCN model to estimate the unknown opinions ωx

while taking into account the heterogeneous dependencies
among the variables x and y. We first introduce the two
separate models and then discuss how these two models can be
effectively bridged for the task of opinion inference using the
framework of knowledge distillation. For notational simplicity,
we consider all the binary variables in x and y as dummy
variables, i.e., xi, yj ∈ [0, 1]2.
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Fig. 1. Framework overview. At each iteration `, the unknown opinions
ω

(`+1)
x are estimated by projecting the conditional PDF of the GCN model,

p(x,y|r; θ(`)), to a subspace Q of PDF functions q(x,y;ωx) defined by
the opinions ωx. After that, the parameters θ(`+1) of the GCN model are
updated to minimize the prediction loss of the true labels y and the feedback
soft labels x̄ obtained from the estimated opinions ω

(`+1)
x .

A. A Probabilistic Model of Opinions (q(x,y;ωx, ωy)).

Based on the properties of Beta opinions as discussed in
Section II-A, we have the following Bayesian distributions:
yi ∼ Bern(yi; pyi); pyi ∼ Beta(pyi ;ωyi). The probability den-
sity function (PDF) of yi based on its opinion ωyi can be cal-
culated as q(yi;ωyi) =

∫
Beta(pyi ;ωyi)Bern(yi; pyi)dpyi =

Bern(yi;
αyi

αyi
+βyi

), where ωyi = (αyi , βyi). The PDF function
q(xi;ωxi

) can be calculated in a similar manner. The joint
PDF function of x and y based on the opinions ωx and ωy

can be then calculated as:

q(x,y;ωx, ωy) =
N∏
i=1

q(xi;ωxi
)
M∏
j=1

q(yj ;ωyj ) (11)

B. A GCN Model of x and y (p(x,y|r; θ))

To employ a GCN model here, we first design a pseudo
feature vector r ∈ RN+M , in which ri = 0 if i ≤ N ;
rj = −1 for j > N if yj−N,0 = 1 ; and otherwise, rj = 1. A
GCN model defines a conditional PDF p(x,y|r; θ) by using
a softmax output layer that produces a ((N + M) × 2)-
dimensional soft prediction matrix px,y ∈ [0, 1](N+M)×2 as
defined below,

px,y = g(r;A, θ) : RM+N → [0, 1](M+N)×2, (12)

where g(r;A, θ) is defined in Eq. (9) and θ = {W (0),W (1)}
refers to the parameters of the GCN model. The conditional
PDF function p(x,y|r; θ) has the form as:

p(x,y|r; θ) =

N∏
i=1

p(xi|ri; θ)
M∏
j=1

p(yi|rN+j ; θ) (13)

where p(xi|ri; θ) =
∏2
k=1[gi,k(r,A; θ)]xi,k and

p(yi|rN+j ; θ) =
∏2
k=1[gi+N,k(r,A; θ)]yi,k .

C. Bridging the Two Models for Prediction of ωx based on
Knowledge Distillation.

The goal is to predict the unknown opinions ωx based
on the observations and opinions of the input variables y,

Algorithm 1: Prediction of Unknown Opinions

Input: {y(1), · · · ,y(T )} and ωy

Output: ωx

1 ` = 1;
2 Estimate the initial θ(`) by solving Problem (18) with π = 1

using the back propagation algorithm;
3 π = 0.5;
4 repeat
5 Calculate ω

(`+1)
x via Eq. (17);

6 Estimate θ(`+1) by solving Problem (18) using the back
propagation algorithm;

7 ` = `+ 1;
8 until convergence
9 return ωlx

including {y(1), · · · ,y(T )} and ωy. Employing the opinion-
based PDF model q(x,y;ωx, ωy) alone is insufficient as it
fails to model the heterogeneous dependencies between x
and y based on their relations in the network. Similarly,
the GCN model p(x, y|r; θ) can not be directly applied
to predict ωx as it is incapable of modeling the opinions
directly, although it has well modeled the heterogeneous
dependency information among x and y. We develop a
novel iterative knowledge distillation algorithm that transfers
the heterogeneous dependency information between x and y
in the GCN model into the estimation of the unknown opinions
ωx, while at the same time, we use the estimated ωx in each
iteration to help improve the estimate of the parameters θ for
the GCN model. The main steps of our proposed algorithm are
summarized in Algorithm 1 and its key idea is illustrated in
Fig. 1. In particular, our approach is composed of the following
two main components:
(1) Transferring of the dependency information from the
GCN model to the probabilistic model of opinions for
predicting opinions ωx based on the estimated parameters
θ(`) at iteration `. In this component, we assume that an
estimation of the parameters θ of the GCN model at iteration
` is given as θ(`). Our proposed approach is to estimate an
approximate PDF function q(x,y) in the parametric space
Q = {q(x,y) | q(x,y) = q(x,y;ωx, ωy),∀ωx} that is as
close as possible to the conditional PDF function defined by
the GCN model. We consider the Kullback–Leibler divergence
as the distance metric between PDF functions and the resulting
optimization problem can then be formulated as follows:

min
ωx

KL
( T∏
t=1

q(x(t),y(t);ωx,ωy)‖
T∏
t=1

p(x(t),y(t)|r(t); θ(`))
)
, (14)

which can be interpreted as the a projection of the PDF
function q(x(t),y(t);ωx,ωy) to the space of PDF functions
Q as parameterized by the unknown opinions ωx. Further,
Problem (14) can be shown to be equivalent to

min
ωx

T∑
t=1

N∑
i=1

E[log q(x
(t)
i ;ωxi)] +

T∑
t=1

M∑
j=1

E[log q(y
(t)
j ;ωyj )]−

T∑
t=1

N∑
i=1

E[log p(x
(t)
i |r

(t)
i ; θ(`))]−

T∑
t=1

M∑
j=1

E[log p(y
(t)
j |r

(t)
N+j ; θ

(`))],
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where E[f(x,y)] =
∑

x,y f(x,y)q(x,y;ωx,ωy). As the
above objective function is an additive function of the opin-
ions {ωx1

, · · · , ωxN
}, we conclude that Problem (14) can be

decomposed N independent subgraph problem as follows:

min
ωxi

T∑
t=1

E
(

[log q(x
(t)
i ;ωxi)]− E[log p(x

(t)
i |r

(t)
i ; θ(`))]

)
, (15)

where ωxi
= (αxi

, βxi
) refers to the parameters of the

opinion of the variable xi corresponding to the node oi in
E2. Problem (15) can be shown to be equivalent to

min
p̄xi

T∑
t=1

p̄xi log
p̄xi

g(r(t), A; θ(`))
+ (1− p̄xi) log

1− p̄xi
1− g(r(t), A; θ(`))

,

where p̄xi =
αxi

αxi
+βxi

. By calculating the gradient of the
above objective function and conditioning the gradient to 0,
we obtain the the analytical solution for p̄xi

:

p̄(`)xi
=

T

√∏T
t=1

g(r(t),A;θ(`))
1−g(r(t),A;θ(`))

T

√∏T
t=1

g(r(t),A;θ(`))
1−g(r(t),A;θ(`))

+ 1
(16)

As the parameters αxi
and βxi

satisfy the property that αxi
+

βxi = T , we obtain the analytical form of the updated opinions
ω
(`+1)
xi = (α

(`+1)
xi , β

(`+1)
xi ) as follows:

α(`+1)
xi

= p̄(`)xi
· T ; β(`+1)

xi
= T − α(`+1)

xi
, ∀i = 1, · · · , N. (17)

(2) Estimation of θ for the GCN model based on feedback
from the predicted opinions ω(`)

x at iteration `. Here, we
assume that the predicted opinions ω(`)

x are given, which pro-

vides a soft prediction for each variable xi: x̄xi
=

α(`)
xi

α
(`)
xi

+β
(`)
xi

.
The soft predictions transfer back the knowledge of opinions
ω

(`)
x to the training process of the GCN model. The resulting

objective for the estimation of θ can be defined as:

θ(`+1) = arg min
θ

T∑
t=1

M∑
i=1

2∑
j=1

πy
(t)
i,j · log gi+N,j(r

(t), A; θ) +

T∑
t=1

N∑
i=1

2∑
j=1

(1− π)x̄i,j log gi,j(r
(t), A; θ), (18)

where the objective function is defined based on the cross
entropy loss for classification and π is an imitation parameter
that calibrates the relative importance of the two components
in the objective function. Problem (18) can then be solved
using the general back propagation procedure for deep learning
models. We note that a similar imitation procedure has been
shown effective in regularizations of deep learning models,
such as an imitation procedure that transfers the knowlege
of logic rules to a deep neural network for modeling of
sequences [9] and another one for model compression where
the procedure is called distillation [8].

V. RESULTS AND ANALYSIS

A. Experimental Settings

1) Road traffic datasets: We collected traffic data from June
1, 2013 to March 31, 2014 across two cities from INRIX [1],

Washington D.C. and Philadelphia (PA), as summarized in
Table II. The raw INRIX dataset provides traffic speed and
reference speed information for each road link per hour
interval. A reference speed is defined as the “uncongested
free flow speed” for each road segment [2]. It is calculated
based upon the 85-th percentile of the measured speed for
all time periods over a few years, where the reference speed
serves as a threshold separating two traffic states, congested vs.
uncongested. The road traffic dataset for each of the two cities
has 43 weeks in total. An hour is represented by a specific
combination of hours of a day (h ∈ {6, 9, 12, ..., 21}), days
of a week (d ∈ {1, 2, 3, 4, 5}), and weeks (w ∈ {1, 2, ..., 43}):
(h, d, w).

TABLE II
Description of the three real-world datasets

Dataset name # nodes # edges # weeks # snapshots (hours) in total
Washington, D.C. 1,383 1,878 43 3440

Philadelphia 603 708 43 3440

Estimation of opinions of training and testing edges in
each dataset. For each road traffic dataset, the opinion of
a specific (training or testing) link s at an hour (h, d, w) is
estimated based on the observations of the same hour in pre-
vious T weeks {xs,h,d,w, xs,h,d,w−1, ..., xs,h,d,w−T+1} as the
evidence, where xs,h,d,w refers to the congestion observation
(0 or 1) of the link s at hour (h, d, w) and T refers to a
predefined time window size.

2) Parameter settings: The main parameters for all the
datasets include T (time window size) and TR (test ratio or
the percentage of edges that are tested). The values of T are
set as T ∈ {2, 3, 6, 8, 11}. The uncertainty mass values are set
to {50%, 40%, 25%, 20%, 15%}. The values of TR are set to
{10%, 20%, 30%, 40%}.

3) Performance metrics: The uncertainty mass, us, for each
training or testing edge is a known and constant value, u,
after the window size T is predefined, without the actual
observations of this link. For this reason, the empirical analysis
based on the road traffic datasets focuses the comparison
between the proposed method and comparable methods based
on the two metrics: Expected Belief MSE (EB-MSE) and
running time complexity (second.). As Table I shows, EB-
MSE is defined as:

EB-MSE(ωx) =
1

N

∑N

i=1

∣∣∣ axi

axi + bxi

−
a?xi

a?xi
+ b?xi

∣∣∣ (19)

where ωxi
= (axi

, bxi
, u) and ω?xi

= (a?xi
, b?xi

, u) refers to the
predicted and true opinions of a target variable xi, respectively;
and axi

axi
+bxi

refers to the expected belief of the opinion ωxi .
4) Comparison methods: We compared our proposed GCN-

based method with the comparable counterpart methods, in-
cluding CSL [6] and SL [11], as discussed in Section II-A.

B. Experimental Results based on Real-World Datasets

Fig. 2 compares the performance of our proposed GCN-
based approach with that of the two counterpart methods (i.e.,
CSL and SL) with respect to EB-MSE based on two road
taffic datasets (PA and DC). The results indicate that our GCN-
based approach performs the best among all in EB-MSE. The
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(a) 10% Test Ratio, PA Dataset (b) 30% Test Ratio, PA Dataset (c) 10% Test Ratio, DC Dataset (d) 30% Test Ratio, DC Dataset

Fig. 2. Comparison of CSL and counterpart methods under test ratio of 10% and 30%: EB-MSE vs. uncertainty mass

GCN-based approach is less sensitive than CSL and SL to u
by showing that EB-MSE in SL significantly decreases as u
decreases. When u is low (i.e., 20% or 15%), EB-MSE of the
three methods are comparable under certain settings while the
GCN-based approach still outeprforms with 30% of the test
ratio in overall.

Fig. 3 shows the average log snapshot-level running times
for different test ratios (i.e., 10% and 30%) on the two road
traffic datasts obtained for PA and DC. When the network
size increases, the time complexity of SL increases in an
exponential order while those of the GCN-based approach and
CSL increase in a linear order. Since SL needs to identify
all independent paths among the observed opinions [11], it
has much higher complexity for large network data than the
other two methods. Further, our GCN-based method shows
better running time than CSL since the GCN-based method
uses GCN and knowledge distillation whose scales are in a
linear order.

Fig. 3. Running Time vs. TR = 10%, 30% on the Real-World Datasets

Summary. Overall, our GCN-based method outperforms
all other counterparts. In particular, our GCN-based method
shows less sensitivity over a wide range of the uncertainty
mass, implying high resilience, compared to CSL and SL. The
performance order in EB-MSE follows: GCN-based method
> CSL > SL. The higher performance of GCN-based method
and CSL over SL is because they both use collective opinion
inference procedures. The performance order in running time
is also the same as that in EB-MSE.

VI. CONCLUSION

In this work, we propose a novel deep-learning based
approach via GCN and knowledge distillation to derive un-
known opinions based on known opinion probabilities and the
heterogeneous dependencies between node-level variables in
the input network. In our future work, we plan to validate the

performance of our GCN-based method based on more real-
world datasets (e.g., cyber security datasets) and extend our
proposed method to address uncertainty-based online opinion
inference problems.
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